|
|
51CTO旗下网站
|
|
移动端

开源!Gartner力推的百页机器学习书,可以免费下载了!

机器学习是驱动人工智能发展的主要动力,这个领域的专家数量不多,各大企业都在争抢高技能人才。说到这里,你可能已经猜到猿哥今天要和大家分享的是一本有关人工智能的书,这本书只有152页,非常简短。名叫——《The Hundred-Page Machine Learning Book》

作者:佚名来源:程序员书库|2019-06-06 14:32

如今的大型企业都在经历着自工业化以来***的变革。人工智能颠覆了工业,颠覆了我们的工作、思考和互动的方式,Gartner的一项报告预测,到2020年,人工智能将创造230万个就业岗位,以此同时也会减少180万个人力岗位。机器学习是驱动人工智能发展的主要动力,这个领域的专家数量不多,各大企业都在争抢高技能人才。

说到这里,你可能已经猜到猿哥今天要和大家分享的是一本有关人工智能的书,这本书只有152页,非常简短。名叫——《The Hundred-Page Machine Learning Book》

开源!Gartner力推的百页机器学习书,可以免费下载了!

但麻雀虽小五脏俱全,这本书涵盖了监督和非监督式学习,支持向量机,神经网络,集成方法,梯度下降法,聚类分析和数据降维,自编码和迁移学习,特征工程和超参数优化,数学知识、插图等内容都包含在这本152页的书籍里

具体的章节目录如下:

  • 前言
  • 第 1 章:介绍
  • ***部分:监督式学习
  • 第二章:标记和定义
  • 第三章:基础算法
  • 第四章:学习算法的解剖
  • 第五章:基础实战
  • 第六章:神经网络与深度学习
  • 第七章:问题与解决
  • 第八章:进阶实战
  • 第二部分:非监督式学习和其它学习
  • 第九章:非监督式学习
  • 第十章:其它形式学习
  • 第十一章:结论

作者本着先阅读后购买的原则,因此你可以先在在线免费阅读/下载书籍,直到你认为它值得你购买的时候再购买。

开源!Gartner力推的百页机器学习书,可以免费下载了!

这本书在线阅读还有一个好处就是,在页面的右侧有网友评论,你可以通过网友评论发现本书错误或者不足的地方,从而避免被误导,还能查看作者***的更新时间等

除此之外,作者还在GitHub上开源了本书配套的所有代码

开源!Gartner力推的百页机器学习书,可以免费下载了!

GitHub地址:https://github.com/aburkov/theMLbook

比如多元高斯分布(GaussianMixture Model GMM)这个内容,作者在书的9.2.4进行了详细的讲解:

开源!Gartner力推的百页机器学习书,可以免费下载了!

再如第三章中的关于线性回归算法的介绍:线性回归算法是一种流行的回归学习算法,学习的模型是利用数理统计中的回归分析

开源!Gartner力推的百页机器学习书,可以免费下载了!

其对应的Python代码如下:

  1. import numpy as np 
  2. import matplotlib.pyplot as plt 
  3.  
  4. from sklearn.linear_model import Ridge 
  5. from sklearn.preprocessing import PolynomialFeatures 
  6. from sklearn.pipeline import make_pipeline 
  7.  
  8. import matplotlib 
  9. matplotlib.rcParams['mathtext.fontset'] = 'stix' 
  10. matplotlib.rcParams['font.family'] = 'STIXGeneral' 
  11. matplotlib.rcParams.update({'font.size': 18}) 
  12.  
  13. def f(x): 
  14.     """ function to approximate by polynomial interpolation""" 
  15.     return 0.5 * x 
  16.  
  17.  
  18. # generate points used to plot 
  19. x_plot = np.linspace(-10, 10, 100) 
  20.  
  21. # generate points and keep a subset of them 
  22. x = np.linspace(-10, 10, 100) 
  23. rng = np.random.RandomState(0) 
  24. rng.shuffle(x) 
  25. x = np.sort(x[:10]) 
  26. noize = [(-2 + np.random.random()*2) for i in range(len(x))] 
  27. y = f(x) + noize 
  28.  
  29. create matrix versions of these arrays 
  30. X = x[:, np.newaxis] 
  31. X_plot = x_plot[:, np.newaxis] 
  32.  
  33. colors = ['red''red']#, 'orange' 
  34. lw = 2 
  35.  
  36.  
  37. type_of_regression = ["linear regression""regression of degree 10"
  38. fit = ["fit""overfit"
  39. for count, degree in enumerate([1,10]):#, 2, 15 
  40.     plt.figure(count
  41.     axes = plt.gca() 
  42.     axes.set_xlim([-10,10]) 
  43.     axes.set_ylim([-10,10]) 
  44.     plt.scatter(x, y, color='navy', s=30, marker='o', label="training examples"
  45.     plt.xticks([-10.0, -5.0, 0.0, 5.0, 10.0]) 
  46.     plt.yticks([-10.0, -5.0, 0.0, 5.0, 10.0]) 
  47.     model = make_pipeline(PolynomialFeatures(degree), Ridge()) 
  48.     model.fit(X, y) 
  49.     y_plot = model.predict(X_plot) 
  50.     plt.plot(x_plot, y_plot, color=colors[count], linewidth=lw, 
  51.              label=type_of_regression[count]) 
  52.  
  53.     plt.legend(loc='best'
  54.     fig1 = plt.gcf() 
  55.     fig1.subplots_adjust(top = 0.98, bottom = 0.1, right = 0.98, left = 0.08, hspace = 0, wspace = 0) 
  56.     fig1.savefig('../../Illustrations/linear-regression-' + fit[count] + '.eps', format='eps', dpi=1000, bbox_inches = 'tight', pad_inches = 0) 
  57.     fig1.savefig('../../Illustrations/linear-regression-' + fit[count] + '.pdf', format='pdf', dpi=1000, bbox_inches = 'tight', pad_inches = 0) 
  58.     fig1.savefig('../../Illustrations/linear-regression-' + fit[count] + '.png', dpi=1000, bbox_inches = 'tight', pad_inches = 0) 
  59.  
  60.  
  61. plt.show() 

也就是说这本书里的插图都附有源代码,这些源代码你都可以在GitHub上找到。

关于作者

开源!Gartner力推的百页机器学习书,可以免费下载了!

Andriy Burkov,是一名机器学习专家,早在九年前就已经取得了博士学位,他的专长是自然语言处理,在人工智能方面,过去的7年里,Andriy Burkov一直在Gartner带领一个机器学习开发团队。

***,附上本书的下载地址:http://themlbook.com/wiki/doku.php

【编辑推荐】

  1. 蚂蚁金服开源机器学习工具SQLFlow,机器学习比SQL还简单
  2. 五月GitHub最热机器学习项目都在这里了
  3. 速看!十大免费机器学习课程已经给你备好了
  4. 机器学习与脑科学双重加持 ***教育发展的下一个十年
  5. 机器学习算法在IDS中的应用
【责任编辑:未丽燕 TEL:(010)68476606】

点赞 0
分享:
大家都在看
猜你喜欢

订阅专栏+更多

16招轻松掌握PPT技巧

16招轻松掌握PPT技巧

GET职场加薪技能
共16章 | 晒书包

289人订阅学习

20个局域网建设改造案例

20个局域网建设改造案例

网络搭建技巧
共20章 | 捷哥CCIE

645人订阅学习

WOT2019全球人工智能技术峰会

WOT2019全球人工智能技术峰会

通用技术、应用领域、企业赋能三大章节,13大技术专场,60+国内外一线人工智能精英大咖站台,分享人工智能的平台工具、算法模型、语音视觉等技术主题,助力人工智能落地。
共50章 | WOT峰会

0人订阅学习

读 书 +更多

Fedora Core 5 Linux系统安装与管理

以Linux为代表的自由软件及其稳定性,逐渐在全世界崭露头角且备受重视。由于可以支持多种网络环境,因此在采用Linux系统之前,必须熟悉各种...

订阅51CTO邮刊

点击这里查看样刊

订阅51CTO邮刊

51CTO服务号

51CTO播客