|
|
51CTO旗下网站
|
|
移动端

解决现实世界问题的四大机器学习策略

有的在线学习算法还会“适应”,即随时调整模型,跟随或追踪数据的变化。具体而言,它们会逐渐“遗忘”过时数据,从而适用于环境 模型随时变动的应用程序。

作者:大数据地盘来源:CIO时代|2018-11-07 13:00

机器学习有四种广受认可的形式:监督式、无监督式、半监督式和强化式。在研究文献中,这些形式得到了深入的探讨。它们也被纳入了大多数机器学习算法的入门课程。下表对这四种形式作了总结。

\

但一个并不广为人知的概念是机器学习策略,即以创造性的方式,运用基本的机器学习算法,解决现实世界问题。我对这些策略产生了浓厚的兴趣。在这篇文章中,我将探讨四种策略:在线学习、迁移学习、集成学习和深度学习。好在,这四项策略适用于表格中任意一种机器学习形式。

一、在线学习

在线学习使用瞬息万变的数据。这类模型跟着数据及时更新,并不存储先前的数据。有的在线学习算法还会“适应”,即随时调整模型,跟随或追踪数据的变化。具体而言,它们会逐渐“遗忘”过时数据,从而适用于环境/模型随时变动的应用程序。批量(或离线)学习使用静态的数据,可以充当在线学习的热身。在批量学习中,模型一次性完成所有数据的学习。很多在线学习算法使用一个批量/离线算法(以一小批数据为基础),为模型作启动前的热身。这种做法可以显着加快算法的收敛(convergence)速度。

二、迁移学习

迁移学习将一个领域的知识应用到另一个领域。它将旧的数据、模型和参数用于新问题的解决,对于机器学习模型的终身学习而言至关重要。迁移学习是人与生俱来的能力。举个例子,我们会将已经掌握的语言知识(词汇、语法等),应用到新语言的学习中。两种语言越是接近,知识迁移就越简单。

三、集成学习

单学习器模型只用一个学习器(算法),而集成学习使用多个学习器。一般的集成算法包含梯度提升、引导聚集、决策森林、堆栈集成和超级学习器。集成学习可以结合相对较弱(很多情况下,预测精度只略高于随机猜测)的学习器,产生强大、准确的模型。

四、深度学习

深度学习包含多个层,可以学习数据的层级化或多尺度特征。与之相对的是“浅层学习”,即简单地运用普通的机器学习建模算法。通常,浅层学习离不开特征工程(feature engineering),以保障输入以适当的形式呈现给模型,而深度学习在训练时,就自然而然地学会了这些特征。

在用机器学习算法解决日常业务难题时,机器学习策略是我们要考虑的又一个方面。

【编辑推荐】

  1. 阿里蚂蚁的机器学习算法-一 、二、三面面经,干货速收!
  2. 5G承载网运营难 机器学习技术搞得定
  3. 机器学习十二大经验准则
  4. 四大机器学习编程语言对比:R、Python、MATLAB、Octave
  5. 用Amazon SageMaker训练和部署机器学习模型
【责任编辑:庞桂玉 TEL:(010)68476606】

点赞 0
分享:
大家都在看
猜你喜欢

读 书 +更多

网络工程师必读——网络系统设计

本书是一本真正意义上的网络系统设计图书,从网络系统设计角度全面介绍了整个网络系统设计的思路和方法,而不是像传统网络集成类图书那样主...

订阅51CTO邮刊

点击这里查看样刊

订阅51CTO邮刊